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1 Subgradient Descent

In the last subsection, we have shown that how to use gradient descent algorithms to solve smooth and
convex objective function.

Q: How about non-smooth objective function?
Example 1 Least Absolute Deviation Regression (LAD Regression), it is similar to the Least Squares prob-
lems with the optimization formulation as:
min ||Ax — bl|;. (1)
X

We need a way to measure stationarity in the non-smooth case. For convex functions, a natural notion is
that of the subgradient/subdifferential.

1.1 Subgradient and Subdifferential

Definition 1 A subgradient of a convex possible non-smooth function f : R™ — R at x € R™ is a vector
g e R"
fy) =z (gy — %)+ f(x)

for ally.

Definition 2 The subdifferential of [ at x is the set of all subgradients, denoted O f(x). Equivalently
Of(x) = {g € R : [(y) = (g,y — x) + (%) for ally}.

Theorem 1 x* is a global minimal point of the convex possible non-smooth function f if and only if 0 €

af (x*).

Remark 1 Geomeltric Interpretation of Subgradient: Assume that (y,t) € epi(f), then f(y) < t. Thus,
t> f(y) > {g,y —x)+ f(x). This implies

(%) (1) () =o @

Theorem 2 Suppose that f(x) is convex and differentiable at point x¢, then 0f(x¢) = {V f(x0)}

Proof 1 Obwiously, V f(xg) € 0f(x0). Assume that g € 0f(xo) but g # Vf(x0). For any d € R*,d # 0,
and exist t > 0 such that xo +td € (f). So, f(x°) +td) > f(x°) + t(g,d). Letd = g — Vf(x°) #0, then

JO + 1) = FO0) — HVFOO) d) _ (g~ V(0. )
] L

= [la] > 0. 3)

However, ast — 0, Eq.(3) should be goes to zero. Thus, it is controversial.



Theorem 3 Suppose that [ is a convex function, if x € int(f) then Of(x) # 0.

Proof 2 For any x € dom(f) and (x, f(x)) € epi(f), it has epi(f) is conver due to the convexity of f.
Based on Supporting Hyperplan Theorem, there exists a,b such that

(3)-(7) - (7)) = 0900 < cnit 0

So, (a,y —x) < b(f(x) —1),Y(y,t) € epi(f). Consider t — oo, then b should be b < 0. In addition, b is not
zero, because (a,y —x) < 0 is not corrected for ally. Then b < 0. Let g = —%2, then

8.y —x) = (~3.¥ —%) <t f(). (5)

Take t = f(y), then f(y) > f(x) + (g.y — x). So, g € Df(x) #0.

Theorem 4 (Monotonicity) Suppose that f: R™ — R is convez, and x,y € dom(f), then

(a—b, f(x) - f(y)) =0 (6)
where a € 9f(x) and b € Of(y).

Example 2 Let us show some examples of deriving subgradient and subdifferential.

o f(x)=|z|, Then
{1}, ifx >0
of(x) =< [-1,1], ifz=0
{-1}, ifr <0

e f(z) = max(x,0) is called ReLU which is widely used in Deep Learning models. You can compute the
subdifferential of it by yourself.

o (%) = %]z, x € R

Of(x) = {m}’ x#0 ;
) {{g: Igll2 < 1}, (7)

x =0.

Computational Rules of Subgradients: See Page 68-75.

(1) f1 and fo are convex, and int(f1) Nint(fz) # 0, then for any x € int(f1) Nint(fz) and f(x) =
ayf1 + asfo, a1 > 0,a9 > 0, we have

0f(x) = alafl + OCQan. (8)
(2) Assume that h is convex, and f(x) = h(Ax + b), then
Of(x) = ATOh(Ax + b). (9)

3) Suppose that f1,..., fm : R® — R are convex, let f = max{fi,..., fm}, then for any x0 € N intdom fi),
=1
denote I(XO) = {z : fi(xo) = f(xo)} then

of(x°) = conv(Ujer(x0)0 fi (x°)) (10)

The usefulness of the rules can be found in Example 2.16, 2.17, and 2.18 at Page 71 and 72.



1.1.1 Subgradient Descent

Subgradient descent algorithm should be
Xt = xt _ 5,0t (11)
where g € 9f(x").

Compared with the standard gradient descent algorithm, we need to consider the following problems:

e How to select gt € 9f(x")?
e How to choice the step size s;7

e How to stop the algorithm?

We will answer these questions for the specific non-smooth objective function which is a Lipschitz continuous
function.

Definition 3 Function f : R® — R is Lipschitz function with respect to a constant G > 0 if for any
X,y € dom(f)

IF(x) = f)I < Glx =yl (12)

where G is referred as to Lipschitz constant of f.

Example 3 o f(x) =|x| is 1-Lip.
e f(x)=a'x+b is|al-Lip.

Theorem 5 f is convez, then f is a G-Lip function if and only if ||g|| < G, for any g € 0f(x),x € dom(f).

Proof 3 Part 1: If f is a convex, G-Lip function, and there exists g € 0f(x) such that ||g|| > G. Let
y=x+ Hg—”. Then by the definition of G-Lip, we have

1f(y) = f®) = Glly — x| < |gll- (13)
However, according to the definition of subgradient, we have
fy) = fx) =z (g y —x) = gl (14)

These two inequalities are controversial.

Part 2: Assume that f is convex and for any g € Jf(x),||gl| < G. Then for any x,y € (f), we have

foy) = F(x) = (gx,y —x) > —[lgxllIx -yl =2 =Glx -y, (15)
fFy) =) < (8y,y —x) < llgylllIx —yll < Gllx -yl (16)

These indicate the results.

Theorem 6 Assume that f is a convex and G-Lip function, x* = argmin f(x), f* = f(x*) > —o0o, then
{x'}22, is generated form the subgradient descent algorithm, then for any T > 0, it has

T
xRyl 8

f(X )_f = QE;F:OSt

: (17)

here t* = i t.
where arg Ogngf(x )



Proof 4
I = x|* = x" — s — x|
=[x = x| = 2s¢(ge, x" — x7) + 57 [lgell?
< Jlx" =X = 25, (f(x") = ) + 57 G2,
where the last inequality by the convezity of f. So, it can be derived as

25, (f(x") = f*) < flx" = x| =[x = x| + 57 G

Thus,
T T
2(f(x") = f) D s <2 s(f(x) — f7)
t=0 t=0
T
< = x*|P = X =X P GRS
t=0
T
<X = x*)? + G? Zs?
t=0
Finally,
0 *||2 2T 2
f(xt*) < [x° —x* "+ G 3, 5t

T
2 105t

Let us discuss the above theorem.

(1) f(x!) — f(x*) may be not decreasing!

(2) Let [|x° —x*||*> = R?,s; = s, then

. R?  sTG?
Y - fr < — = .
) - g < g T )
Obvisouly, if s = G—Rﬁ, then min ®(s) = G—\/%. Thus,
GR

fx) =< inf (s) = Nid

This indicates that the convergence speed is the same with the only S-smooth objective function.

(3) To f(x*") — f* — 0, it should be >;° s, = +o0c and 372, s2 < M, where M is a constant.

Q: Could you please give us an example of {s;:}7°,.
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