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1 Subgradient Descent

In the last subsection, we have shown that how to use gradient descent algorithms to solve smooth and
convex objective function.

Q: How about non-smooth objective function?

Example 1 Least Absolute Deviation Regression (LAD Regression), it is similar to the Least Squares prob-
lems with the optimization formulation as:

min
x
‖Ax− b‖1. (1)

We need a way to measure stationarity in the non-smooth case. For convex functions, a natural notion is
that of the subgradient/subdifferential.

1.1 Subgradient and Subdifferential

Definition 1 A subgradient of a convex possible non-smooth function f : Rn → R at x ∈ Rn is a vector
g ∈ Rn

f(y) ≥ 〈g,y − x〉+ f(x)

for all y.

Definition 2 The subdifferential of f at x is the set of all subgradients, denoted ∂f(x). Equivalently

∂f(x) := {g ∈ Rn : f(y) ≥ 〈g,y − x〉+ f(x) for all y}.

Theorem 1 x∗ is a global minimal point of the convex possible non-smooth function f if and only if 0 ∈
∂f(x∗).

Remark 1 Geometric Interpretation of Subgradient: Assume that (y, t) ∈ epi(f), then f(y) ≤ t. Thus,
t ≥ f(y) ≥ 〈g,y − x〉+ f(x). This implies

〈
(

g
−1

)
,

(
y
t

)
−
(

x
f(x)

)
〉 ≤ 0. (2)

Theorem 2 Suppose that f(x) is convex and differentiable at point x0, then ∂f(x0) = {∇f(x0)}.

Proof 1 Obviously, ∇f(x0) ∈ ∂f(x0). Assume that g ∈ ∂f(x0) but g 6= ∇f(x0). For any d ∈ Rn,d 6= 0,
and exist t > 0 such that x0 + td ∈ (f). So, f(x0) + td) ≥ f(x0) + t〈g,d〉. Let d = g −∇f(x0) 6= 0, then

f(x0 + td)− f(x0)− t〈∇f(x0),d〉
t‖d‖

≥ 〈g −∇f(x0),d〉
‖d‖

= ‖d‖ > 0. (3)

However, as t→ 0, Eq.(3) should be goes to zero. Thus, it is controversial.

1



Theorem 3 Suppose that f is a convex function, if x ∈ int(f) then ∂f(x) 6= ∅.

Proof 2 For any x ∈ dom(f) and (x, f(x)) ∈ epi(f), it has epi(f) is convex due to the convexity of f .
Based on Supporting Hyperplan Theorem, there exists a,b such that

〈
(

a
b

)
,

(
y
t

)
−
(

x
f(x)

)
〉 ≤ 0,∀(y, t) ∈ epi(f). (4)

So, 〈a,y − x〉 ≤ b(f(x)− t),∀(y, t) ∈ epi(f). Consider t→∞, then b should be b ≤ 0. In addition, b is not
zero, because 〈a,y − x〉 ≤ 0 is not corrected for all y. Then b < 0. Let g = −a

b , then

〈g,y − x〉 = 〈−a

b
,y − x〉 ≤ t− f(x). (5)

Take t = f(y), then f(y) ≥ f(x) + 〈g,y − x〉. So, g ∈ ∂f(x) 6= ∅.

Theorem 4 (Monotonicity) Suppose that f : Rn → R is convex, and x,y ∈ dom(f), then

〈a− b, f(x)− f(y)〉 ≥ 0 (6)

where a ∈ ∂f(x) and b ∈ ∂f(y).

Example 2 Let us show some examples of deriving subgradient and subdifferential.

• f(x) = |x|, Then

∂f(x) =


{1}, if x > 0

[−1, 1], if x = 0

{−1}, if x < 0

• f(x) = max(x, 0) is called ReLU which is widely used in Deep Learning models. You can compute the
subdifferential of it by yourself.

• f(x) = ‖x‖2,x ∈ Rn.

∂f(x) =

{{
x
‖x‖2

}
, x 6= 0

{g : ‖g‖2 ≤ 1}, x = 0.
(7)

Computational Rules of Subgradients: See Page 68-75.

(1) f1 and f2 are convex, and int(f1) ∩ int(f2) 6= ∅, then for any x ∈ int(f1) ∩ int(f2) and f(x) =
α1f1 + α2f2, α1 > 0, α2 > 0, we have

∂f(x) = α1∂f1 + α2∂f2. (8)

(2) Assume that h is convex, and f(x) = h(Ax + b), then

∂f(x) = A>∂h(Ax + b). (9)

(3) Suppose that f1, . . . , fm : Rn → R are convex, let f = max{f1, . . . , fm}, then for any x0 ∈ ∩mi=1intdom(fi),
denote I(x0) = {i : fi(x

0) = f(x0)} then

∂f(x0) = conv(∪i∈I(x0)∂fi(x
0)) (10)

The usefulness of the rules can be found in Example 2.16, 2.17, and 2.18 at Page 71 and 72.
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1.1.1 Subgradient Descent

Subgradient descent algorithm should be

xt+1 = xt − stgt (11)

where gt ∈ ∂f(xt).

Compared with the standard gradient descent algorithm, we need to consider the following problems:

• How to select gt ∈ ∂f(xt)?

• How to choice the step size st?

• How to stop the algorithm?

We will answer these questions for the specific non-smooth objective function which is a Lipschitz continuous
function.

Definition 3 Function f : Rn → R is Lipschitz function with respect to a constant G > 0 if for any
x,y ∈ dom(f)

|f(x)− f(y)| ≤ G‖x− y‖2, (12)

where G is referred as to Lipschitz constant of f .

Example 3 • f(x) = ‖x‖ is 1-Lip.

• f(x) = a>x + b is ‖a‖-Lip.

Theorem 5 f is convex, then f is a G-Lip function if and only if ‖g‖ ≤ G, for any g ∈ ∂f(x),x ∈ dom(f).

Proof 3 Part 1: If f is a convex, G-Lip function, and there exists g ∈ ∂f(x) such that ‖g‖ > G. Let
y = x + g

‖g‖ . Then by the definition of G-Lip, we have

|f(y)− f(x)| ≤ G‖y − x‖ < ‖g‖. (13)

However, according to the definition of subgradient, we have

f(y)− f(x) ≥ 〈g,y − x〉 = ‖g‖. (14)

These two inequalities are controversial.

Part 2: Assume that f is convex and for any g ∈ ∂f(x), ‖g‖ ≤ G. Then for any x,y ∈ (f), we have

f(y)− f(x) ≥ 〈gx,y − x〉 ≥ −‖gx‖‖x− y‖ ≥ −G‖x− y‖, (15)

f(y)− f(x) ≤ 〈gy,y − x〉 ≤ ‖gy‖‖x− y‖ ≤ G‖x− y‖. (16)

These indicate the results.

Theorem 6 Assume that f is a convex and G-Lip function, x∗ = arg min f(x), f∗ = f(x∗) > −∞, then
{xt}∞t=0 is generated form the subgradient descent algorithm, then for any T > 0, it has

f(xt∗)− f∗ ≤
‖x0 − x∗‖2 +G2

∑T
t=0 s

2
t

2
∑T

t=0 st
, (17)

where t∗ = arg min
0≤t≤T

f(xt).
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Proof 4

‖xt+1 − x∗‖2 = ‖xt − stgt − x∗‖2

= ‖xt − x∗‖2 − 2st〈gt,x
t − x∗〉+ s2t‖gt‖2

≤ ‖xt − x∗‖2 − 2st(f(xt)− f∗) + s2tG
2,

where the last inequality by the convexity of f . So, it can be derived as

2st(f(xt)− f∗) ≤ ‖xt − x∗‖2 − ‖xt+1 − x∗‖2 + s2tG
2.

Thus,

2(f(xt∗)− f∗)
T∑

t=0

st ≤ 2

T∑
t=0

st(f(xt)− f∗)

≤ ‖x0 − x∗‖2 − ‖xT − x∗‖2 +G2
T∑

t=0

s2t

≤ ‖x0 − x∗‖2 +G2
T∑

t=0

s2t .

Finally,

f(xt∗)− f∗ ≤
‖x0 − x∗‖2 +G2

∑T
t=0 s

2
t

2
∑T

t=0 st
.

Let us discuss the above theorem.

(1) f(xt)− f(x∗) may be not decreasing!

(2) Let ‖x0 − x∗‖2 = R2, st = s, then

f(xt∗)− f∗ ≤ R2

2Ts
+
sTG2

2
:= Φ(s). (18)

Obvisouly, if s = R
G
√
T

, then min Φ(s) = GR√
T

. Thus,

f(xt∗)− f∗ ≤ inf
s

Φ(s) =
GR√
T
.

This indicates that the convergence speed is the same with the only β-smooth objective function.

(3) To f(xt∗)− f∗ → 0, it should be
∑∞

t=1 st = +∞ and
∑∞

t=1 s
2
t ≤M , where M is a constant.

Q: Could you please give us an example of {st}∞t=0.
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