Optimization Theory and Algorithm Lecture 10 - 05/28/2021

Lecture 10

Lecturer:Xiangyu Chang Scribe: Xiangyu Chang Scribe: Xiangyu Chang

Edited by: Xiangyu Chang

1 Subgradient Descent

In the last subsection, we have shown that how to use gradient descent algorithms to solve smooth and convex objective function.

Q: How about non-smooth objective function?

Example 1 Least Absolute Deviation Regression (LAD Regression), it is similar to the Least Squares problems with the optimization formulation as:

$$
\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|_1. \tag{1}
$$

We need a way to measure stationarity in the non-smooth case. For convex functions, a natural notion is that of the subgradient/subdifferential.

1.1 Subgradient and Subdifferential

Definition 1 A subgradient of a convex possible non-smooth function $f : \mathbb{R}^n \to \mathbb{R}$ at $\mathbf{x} \in \mathbb{R}^n$ is a vector $\mathbf{g} \in \mathbb{R}^n$

$$
f(\mathbf{y}) \ge \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle + f(\mathbf{x})
$$

for all y.

Definition 2 The subdifferential of f at x is the set of all subgradients, denoted $\partial f(x)$. Equivalently

$$
\partial f(\mathbf{x}) := \{ \mathbf{g} \in \mathbb{R}^n : f(\mathbf{y}) \ge \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle + f(\mathbf{x}) \text{ for all } \mathbf{y} \}.
$$

Theorem 1 x^* is a global minimal point of the convex possible non-smooth function f if and only if $0 \in$ $\partial f(\mathbf{x}^*)$.

Remark 1 Geometric Interpretation of Subgradient: Assume that $(y, t) \in epi(f)$, then $f(y) \leq t$. Thus, $t \ge f(\mathbf{y}) \ge \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle + f(\mathbf{x})$. This implies

$$
\langle \begin{pmatrix} \mathbf{g} \\ -1 \end{pmatrix}, \begin{pmatrix} \mathbf{y} \\ t \end{pmatrix} - \begin{pmatrix} \mathbf{x} \\ f(\mathbf{x}) \end{pmatrix} \rangle \le 0.
$$
 (2)

Theorem 2 Suppose that $f(\mathbf{x})$ is convex and differentiable at point \mathbf{x}_0 , then $\partial f(\mathbf{x}_0) = {\nabla f(\mathbf{x}_0)}$.

Proof 1 Obviously, $\nabla f(\mathbf{x}_0) \in \partial f(\mathbf{x}_0)$. Assume that $\mathbf{g} \in \partial f(\mathbf{x}_0)$ but $\mathbf{g} \neq \nabla f(\mathbf{x}_0)$. For any $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq 0$, and exist $t > 0$ such that $\mathbf{x}_0 + t\mathbf{d} \in (f)$. So, $f(\mathbf{x}^0) + t\mathbf{d}) \ge f(\mathbf{x}^0) + t\langle \mathbf{g}, \mathbf{d} \rangle$. Let $\mathbf{d} = g - \nabla f(\mathbf{x}^0) \ne 0$, then

$$
\frac{f(\mathbf{x}^0 + t\mathbf{d}) - f(\mathbf{x}^0) - t\langle \nabla f(\mathbf{x}^0), \mathbf{d} \rangle}{t\|\mathbf{d}\|} \ge \frac{\langle \mathbf{g} - \nabla f(\mathbf{x}^0), \mathbf{d} \rangle}{\|\mathbf{d}\|} = \|\mathbf{d}\| > 0.
$$
 (3)

However, as $t \to 0$, Eq.[\(3\)](#page-0-0) should be goes to zero. Thus, it is controversial.

Theorem 3 Suppose that f is a convex function, if $\mathbf{x} \in int(f)$ then $\partial f(\mathbf{x}) \neq \emptyset$.

Proof 2 For any $\mathbf{x} \in dom(f)$ and $(\mathbf{x}, f(\mathbf{x})) \in epi(f)$, it has epi(f) is convex due to the convexity of f. Based on Supporting Hyperplan Theorem, there exists a, b such that

$$
\langle \begin{pmatrix} \mathbf{a} \\ b \end{pmatrix}, \begin{pmatrix} \mathbf{y} \\ t \end{pmatrix} - \begin{pmatrix} \mathbf{x} \\ f(\mathbf{x}) \end{pmatrix} \rangle \le 0, \forall (\mathbf{y}, t) \in epi(f). \tag{4}
$$

So, $\langle \mathbf{a}, \mathbf{y} - \mathbf{x} \rangle \leq b(f(\mathbf{x}) - t), \forall (\mathbf{y}, t) \in epi(f)$. Consider $t \to \infty$, then b should be $b \leq 0$. In addition, b is not zero, because $\langle \mathbf{a}, \mathbf{y} - \mathbf{x} \rangle \leq 0$ is not corrected for all y. Then $b < 0$. Let $\mathbf{g} = -\frac{\mathbf{a}}{b}$, then

$$
\langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle = \langle -\frac{\mathbf{a}}{b}, \mathbf{y} - \mathbf{x} \rangle \le t - f(\mathbf{x}). \tag{5}
$$

Take $t = f(\mathbf{y})$, then $f(\mathbf{y}) > f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle$. So, $\mathbf{g} \in \partial f(\mathbf{x}) \neq \emptyset$.

Theorem 4 (Monotonicity) Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is convex, and $\mathbf{x}, \mathbf{y} \in dom(f)$, then

$$
\langle \mathbf{a} - \mathbf{b}, f(\mathbf{x}) - f(\mathbf{y}) \rangle \ge 0 \tag{6}
$$

where $\mathbf{a} \in \partial f(\mathbf{x})$ and $\mathbf{b} \in \partial f(\mathbf{y})$.

Example 2 Let us show some examples of deriving subgradient and subdifferential.

• $f(x) = |x|$, Then

$$
\partial f(x) = \begin{cases} \{1\}, & \text{if } x > 0 \\ [-1, 1], & \text{if } x = 0 \\ \{-1\}, & \text{if } x < 0 \end{cases}
$$

- $f(x) = \max(x, 0)$ is called ReLU which is widely used in Deep Learning models. You can compute the subdifferential of it by yourself.
- $f(\mathbf{x}) = ||\mathbf{x}||_2, \mathbf{x} \in \mathbb{R}^n$.

$$
\partial f(x) = \begin{cases} \left\{ \frac{\mathbf{x}}{\|\mathbf{x}\|_2} \right\}, & \mathbf{x} \neq 0\\ \left\{ \mathbf{g} : \|\mathbf{g}\|_2 \le 1 \right\}, & \mathbf{x} = 0. \end{cases} \tag{7}
$$

Computational Rules of Subgradients: See Page 68-75.

(1) f₁ and f₂ are convex, and $int(f_1) \cap int(f_2) \neq \emptyset$, then for any $\mathbf{x} \in int(f_1) \cap int(f_2)$ and $f(\mathbf{x}) =$ $\alpha_1 f_1 + \alpha_2 f_2, \alpha_1 > 0, \alpha_2 > 0$, we have

$$
\partial f(\mathbf{x}) = \alpha_1 \partial f_1 + \alpha_2 \partial f_2. \tag{8}
$$

(2) Assume that h is convex, and $f(\mathbf{x}) = h(A\mathbf{x} + \mathbf{b})$, then

$$
\partial f(\mathbf{x}) = A^{\top} \partial h(A\mathbf{x} + \mathbf{b}). \tag{9}
$$

(3) Suppose that $f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ are convex, let $f = \max\{f_1, \ldots, f_m\}$, then for any $\mathbf{x}^0 \in \bigcap_{i=1}^m intdom(f_i)$, denote $I(\mathbf{x}^0) = \{i : f_i(\mathbf{x}^0) = f(\mathbf{x}^0)\}\)$ then

$$
\partial f(\mathbf{x}^0) = conv(\cup_{i \in I(\mathbf{x}^0)} \partial f_i(\mathbf{x}^0))
$$
\n(10)

The usefulness of the rules can be found in Example 2.16, 2.17, and 2.18 at Page 71 and 72.

1.1.1 Subgradient Descent

Subgradient descent algorithm should be

$$
\mathbf{x}^{t+1} = \mathbf{x}^t - s_t \mathbf{g}^t \tag{11}
$$

where $\mathbf{g}^t \in \partial f(\mathbf{x}^t)$.

Compared with the standard gradient descent algorithm, we need to consider the following problems:

- How to select $\mathbf{g}^t \in \partial f(\mathbf{x}^t)$?
- How to choice the step size s_t ?
- How to stop the algorithm?

We will answer these questions for the specific non-smooth objective function which is a Lipschitz continuous function.

Definition 3 Function $f : \mathbb{R}^n \to \mathbb{R}$ is Lipschitz function with respect to a constant $G > 0$ if for any $\mathbf{x}, \mathbf{y} \in dom(f)$

$$
|f(\mathbf{x}) - f(\mathbf{y})| \le G \|\mathbf{x} - \mathbf{y}\|_2,\tag{12}
$$

where G is referred as to Lipschitz constant of f .

Example 3 • $f(\mathbf{x}) = ||\mathbf{x}||$ is 1-Lip.

• $f(\mathbf{x}) = \mathbf{a}^\top \mathbf{x} + b$ is $||a||$ -Lip.

Theorem 5 f is convex, then f is a G-Lip function if and only if $\|\mathbf{g}\| \leq G$, for any $\mathbf{g} \in \partial f(\mathbf{x}), \mathbf{x} \in dom(f)$.

Proof 3 Part 1: If f is a convex, G-Lip function, and there exists $g \in \partial f(x)$ such that $||g|| > G$. Let $\mathbf{y} = \mathbf{x} + \frac{\mathbf{g}}{\|\mathbf{g}\|}$. Then by the definition of G-Lip, we have

$$
|f(\mathbf{y}) - f(\mathbf{x})| \le G \|\mathbf{y} - \mathbf{x}\| < \|\mathbf{g}\|.\tag{13}
$$

However, according to the definition of subgradient, we have

$$
f(\mathbf{y}) - f(\mathbf{x}) \ge \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle = ||\mathbf{g}||. \tag{14}
$$

These two inequalities are controversial.

Part 2: Assume that f is convex and for any $\mathbf{g} \in \partial f(\mathbf{x})$, $\|\mathbf{g}\| \leq G$. Then for any $\mathbf{x}, \mathbf{y} \in (f)$, we have

$$
f(\mathbf{y}) - f(\mathbf{x}) \ge \langle \mathbf{g}_{\mathbf{x}}, \mathbf{y} - \mathbf{x} \rangle \ge -\|\mathbf{g}_{\mathbf{x}}\| \|\mathbf{x} - \mathbf{y}\| \ge -G \|\mathbf{x} - \mathbf{y}\|,
$$
(15)

$$
f(\mathbf{y}) - f(\mathbf{x}) \le \langle \mathbf{g}_{\mathbf{y}}, \mathbf{y} - \mathbf{x} \rangle \le ||\mathbf{g}_{\mathbf{y}}|| ||\mathbf{x} - \mathbf{y}|| \le G ||\mathbf{x} - \mathbf{y}||. \tag{16}
$$

These indicate the results.

Theorem 6 Assume that f is a convex and G-Lip function, $\mathbf{x}^* = \arg \min f(\mathbf{x}), f^* = f(\mathbf{x}^*) > -\infty$, then ${x^t}_{t=0}^{\infty}$ is generated form the subgradient descent algorithm, then for any $T > 0$, it has

$$
f(\mathbf{x}^{t^*}) - f^* \le \frac{\|\mathbf{x}^0 - \mathbf{x}^*\|^2 + G^2 \sum_{t=0}^T s_t^2}{2 \sum_{t=0}^T s_t},\tag{17}
$$

where $t^* = \arg \min_{0 \le t \le T} f(\mathbf{x}^t)$.

Proof 4

$$
\|\mathbf{x}^{t+1} - \mathbf{x}^*\|^2 = \|\mathbf{x}^t - s_t \mathbf{g}_t - \mathbf{x}^*\|^2
$$

=\|\mathbf{x}^t - \mathbf{x}^*\|^2 - 2s_t \langle \mathbf{g}_t, \mathbf{x}^t - \mathbf{x}^* \rangle + s_t^2 \|\mathbf{g}_t\|^2
\le\|\mathbf{x}^t - \mathbf{x}^*\|^2 - 2s_t(f(\mathbf{x}^t) - f^*) + s_t^2 G^2,

where the last inequality by the convexity of f . So, it can be derived as

$$
2s_t(f(\mathbf{x}^t) - f^*) \le ||\mathbf{x}^t - \mathbf{x}^*||^2 - ||\mathbf{x}^{t+1} - \mathbf{x}^*||^2 + s_t^2 G^2.
$$

Thus,

$$
2(f(\mathbf{x}^{t^*}) - f^*) \sum_{t=0}^{T} s_t \le 2 \sum_{t=0}^{T} s_t (f(\mathbf{x}^t) - f^*)
$$

$$
\le ||\mathbf{x}^0 - \mathbf{x}^*||^2 - ||\mathbf{x}^T - \mathbf{x}^*||^2 + G^2 \sum_{t=0}^{T} s_t^2
$$

$$
\le ||\mathbf{x}^0 - \mathbf{x}^*||^2 + G^2 \sum_{t=0}^{T} s_t^2.
$$

Finally,

$$
f(\mathbf{x}^{t^*}) - f^* \le \frac{\|\mathbf{x}^0 - \mathbf{x}^*\|^2 + G^2 \sum_{t=0}^T s_t^2}{2 \sum_{t=0}^T s_t}
$$

Let us discuss the above theorem.

- (1) $f(\mathbf{x}^t) f(\mathbf{x}^*)$ may be not decreasing!
- (2) Let $\|\mathbf{x}^0 \mathbf{x}^*\|^2 = R^2, s_t = s$, then

$$
f(\mathbf{x}^{t^*}) - f^* \le \frac{R^2}{2Ts} + \frac{sTG^2}{2} := \Phi(s).
$$
 (18)

.

Obvisouly, if $s = \frac{R}{\sqrt{2}}$ $\frac{R}{G\sqrt{T}}$, then min $\Phi(s) = \frac{GR}{\sqrt{T}}$ $\frac{R}{T}$. Thus,

$$
f(\mathbf{x}^{t^*}) - f^* \leq \inf_s \Phi(s) = \frac{GR}{\sqrt{T}}.
$$

This indicates that the convergence speed is the same with the only β -smooth objective function.

(3) To $f(\mathbf{x}^{t^*}) - f^* \to 0$, it should be $\sum_{t=1}^{\infty} s_t = +\infty$ and $\sum_{t=1}^{\infty} s_t^2 \leq M$, where M is a constant. **Q:** Could you please give us an example of $\{s_t\}_{t=0}^{\infty}$.

References